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The mountains are “water towers” in the region

Source: http://www5.worldbank.org
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Seasonal climate variability in the mountainous areas 

• Inverse seasonal patterns between temperature and precipitation

• Higher seasonal volatility of precipitation and temperature during winter-spring time

• Winter-spring snowpack as a water storage for summer discharge

Data: CRU TS v. 4.01

- Harris et al 2014
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Hydrological variability

Seasonal climate and snowpack variability determines hydrological volatility 
in the region

seasonal water availability uncertainty 
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Chapter II

“Generalizable empirical model of snow accumulation and melting 
based on learning from daily snowmass changes in response to 

climate and topographic drivers”
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Background

• Many snow models of varying complexities exist

• Data availability issues in the region:

▪ few data type options as input for the model

▪ no snow observations in the region (hard to calibrate and validate if a 

model is accurate)

• Few snow studies in the region
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The approach

1. Develop an empirical snow model using extensive snow and climate

observations

2. Evaluate the model using locations/data which were not used for its

development

3. Evaluate the model performance in your study area using proxy data
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Machine learning as a modelling platform
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https://www.linkedin.com/pulse/machine-learning-workflow-rao-nisar/

https://www.linkedin.com/pulse/machine-learning-workflow-rao-nisar/


Machine learning as a modelling platform
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snow water equivalent

= 

f (climate + topographic variables)



Data: Where the snow data is abundant?

Source: National Water and Climate Center, USDA  https://www.wcc.nrcs.usda.gov/snow/snow_map.html
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Location of 96 SNOTEL stations used for training the SVR
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Climate and topographic data used to train the model
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Model evaluation I
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Nash-Sutcliffe efficiency (NSE)

Using observations from independent 520 SNOTEL stations from 2012 to 2022



Model evaluation II

Site Elevation (m) Köppen climate classification

Col de Porte, France 1325 Warm-summer humid continental climate

Reynolds Mountain, East Idaho, USA 2060 Warm-summer humid continental climate

Sapporo, Japan 15 Hot summer continental climates

Senator Bec, Colorado, USA 3714 Polar and alpine (montane) climates

Swamp Angel, Colorado, USA 3371 Subarctic climate

Sodankylä, Finland 179 Subarctic climate

Weissfluhjoch,Switzerland 2536 Polar and alpine (montane) climates

• Using reference stations data from Snow models intercomparison project (SnowMIP)
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Model evaluation II
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Senator Bec, Colorado, USA NSE= 0.35Sapporo, Japan NSE=0.72

Sodankylä, Finland NSE=0.7Swamp Angel, Colorado, USA NSE=0.86



Model evaluation II
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Col de Porte, France NSE=0.85

Weissfluhjoch,Switzerland NSE= 0.86

Reynolds Mountain, USA NSE= 0.83



Model evaluation III

• Using satellite images of snow cover extent and its temporal dynamics

Source: https://www.nrsc.gov.in/snowcover
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https://www.nrsc.gov.in/snowcover


Model evaluation III

Snow cover over West Pamir region to validate the model performance
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Model evaluation III
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Snow cover dynamics over Western Pamir during 2015-2016 winter season

from satellite images simulated by the model



Model evaluation III

• Pixel-wise snow cover accuracy = 92%
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Chapter III

“Snowpack-based Seasonal Streamflow Forecasts”
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Study catchments
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Catchment
Catchment 

area (km2)

Catchment 

mean 

altitude 

(m.a.s.l)

Mean 

seasonal 

discharge 

Apr-Sep 

(m3/sec)

Mean annual 

precipitation 

(mm)

1 Murgab 35,582 1710 41 320

2 Amudarya 296,300 2550 1,876 380

3 Varzob 1,279 2700 79 654

4 Vaksh 28,908 3530 996 530

5 Kashkadarya 343 2663 18 530

6 Zaravshan 10,310 3125 243 516

7 Naryn 46,667 2940 561 392

8 Chu 5,305 2934 35 391



Simulated snow water equivalent

accumulated SWE as of 26.02.2020 simulated using MSWX dataset
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SWE estimates used as predictors
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Predictor 

(abbreviation)
Description Source

ERA5-L
SWE retrieved from the ERA5-Land reanalysis 

dataset

Muñoz-Sabater et al., 

2021

FLDAS
SWE retrieved from the Land Data 

Assimilation System Central Asia
McNally et al., 2022

MSWX

SWE simulated using GEMS model forced by 

precipitation and temperature estimates from 

Multi-Source Weather dataset 

Beck et al., 2021 (for 

precipitation and 

temperature)

GPM

SWE simulated using GEMS model forced by 

precipitation from GPM IMERG and 

temperature from MSWX datasets

Huffman et al., 2019 

(precipitation)



Pearson`s correlation coefficients between the SWE estimates and April-September 
mean seasonal discharge at different forecast lead months. Red line is the median 

across all snow products.

25



26

Method: Ensemble-based streamflow forecasting



Results: Resulted LOOCV R-squared coefficients of individual base models at 
different lead months, and the LOOCV R-squared of the meta-learner model (red 

line). 
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Results: Normalized Mean Absolute Error of the simulated seasonal discharge by 
ensemble models for training and hold-out sets at different forecast lead months 
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Results: Observed vs simulated seasonal discharge using Apr 1st

forecast ensemble model
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www.iamo.de/en 30

Thank you 
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Research Directions

Chapter I: Determinants of seasonal precipitation variability

• Objective: How large-scale climate oscillations affect seasonal precipitation in Central Asia

• Status: published (Umirbekov A., Peña-Guerrero M.D., Müller D. (2022) “Regionalization of Climate Teleconnections across Central Asian

Mountains Improves the Predictability of Seasonal Precipitation.”, Environmental Research Letters)

Chapter II: Development of generalizableempirical snow mass model

• Objective: Elaboration of machine learning-based snow model and assessment of its transferability

across diverse climatic and geographic domains

• Status: submitted

Chapter III: A hybrid approach for seasonal discharge forecasting

• Objective: How fusion of snow water equivalent estimates and the climate teleconnections can reduce

uncertainty of water availability in major basins of Central Asia

• Status: internal review
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Linearly Separable Data

Source: “Multiclass classification using SVM”, by @baeldung (2021) https://www.baeldung.com/cs/svm-multiclass-classification34

https://www.baeldung.com/cs/svm-multiclass-classification


Source: “Multiclass classification using SVM”, by @baeldung (2021) https://www.baeldung.com/cs/svm-multiclass-classification35

https://www.baeldung.com/cs/svm-multiclass-classification


Source: “Multiclass classification using SVM”, by @baeldung (2021) https://www.baeldung.com/cs/svm-multiclass-classification36

https://www.baeldung.com/cs/svm-multiclass-classification


Non-Linearly Separable Data

Source: “Support Vector Machines”, by @Satya Mallick https://learnopencv.com/support-vector-machines-svm/37

https://learnopencv.com/support-vector-machines-svm/


Non-Linearly Separable Data

Source: “Support Vector Machines”, by @Satya Mallick https://learnopencv.com/support-vector-machines-svm/38

https://learnopencv.com/support-vector-machines-svm/
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