MODELING CLIMATE CHANGE AND AGRICULTURAL YIELDS: Example of Russia

Maria Belyaeva¹ and Raushan Bokusheva²

¹Leibniz Institute of Agricultural Development in Transition Economies ²Institute for Environmental Decisions, ETH Zürich

AGRIWANET Workshop, 17-18 April 2015

IOMO **ETH**zürich

TABLE OF CONTENTS

- 1 Objective of the study
- 2 Methodology
- 3 Data
- 4 Results

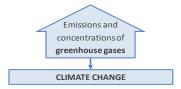
5 Conclusions

I<mark>a</mark>mo

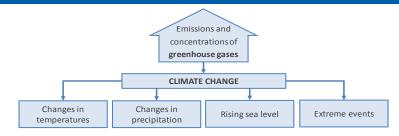
TABLE OF CONTENTS

1 Objective of the study

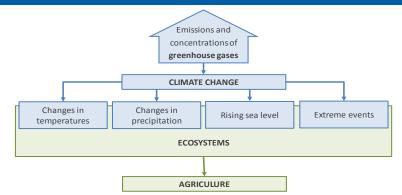
2 Methodology

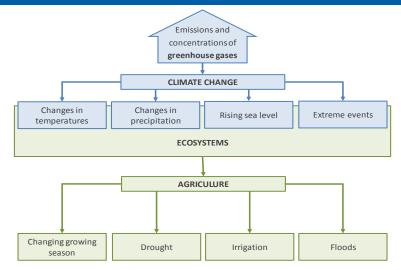

3 Data

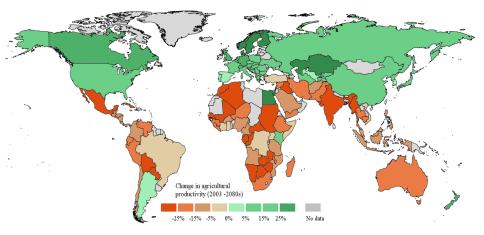
4 Results


5 Conclusions

I<mark>a</mark>mo


Objective of the study		Conclusions


Objective of the study		Conclusions


Objective of the study		Conclusions

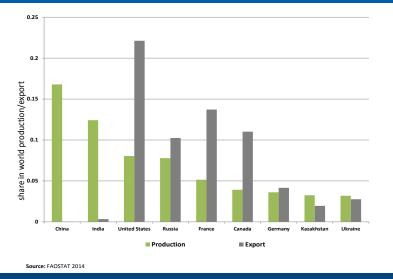
Objective of the study		Conclusions

PROJECTED IMPACT OF CLIMATE CHANGE ON YIELDS

Objective of the study		Conclusions

RESEARCH OBJECTIVE

TO ESTIMATE THE EFFECT OF CLIMATE ON AGRICULTURAL PRODUCTION

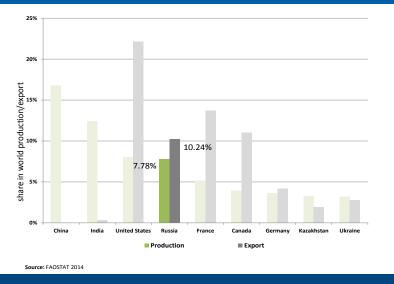

IOMO

Modeling climate change and agricultural yields

AGRIWANET Workshop, 17-18 April 2015

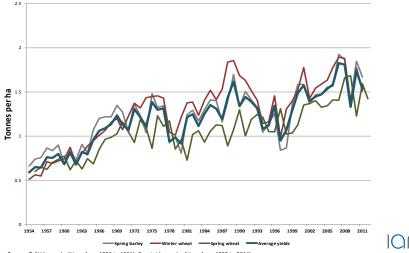
Objective of the study		Conclusions

WORLD GRAIN MARKET



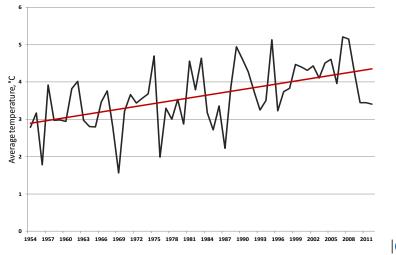
Modeling climate change and agricultural yields

AGRIWANET Workshop, 17-18 April 2015

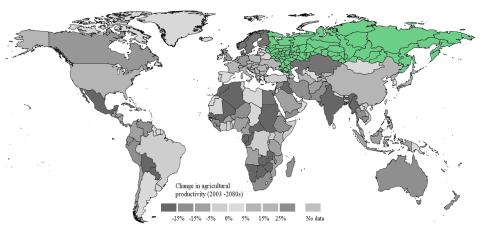

Objective of the study		Conclusions

WORLD GRAIN MARKET

Objective of the study		Conclusions


GRAIN YIELDS IN RUSSIA, 1955-2012

Source: TsSU (annual editions from 1956 to 1991), Rosstat (annual editions from 1992 to 2014)


Objective of the study		Conclusions

AVERAGE TEMPERATURES IN RUSSIA, 1954-2012

Source: author's calculations, based on Sheffield, Goteti and Wood (2006)

PROJECTED IMPACT OF CLIMATE CHANGE ON YIELDS

Objective of the study		Conclusions

PREVIOUS STUDIES

Authors	Title	Climate change impact
Sirotenko et al. (1997)	Sensitivity of the Russian agriculture to changes in climate	Reduction of 15% by 2030
Alcamo et al. (2007)	A new assessment of climate change impacts on food production shortfalls	-9% to +12% depending on oblast
Safonov and Safonova (2013)	Economic analysis of the impact of climate change on agriculture in Russia	+9% by 2030 +12% by 2050
Lobell, Schlenker, and Costa-Roberts (2011)	Climate trends and global crop production since 1980	Reduction of 15% during 1980-2008
Sirotenko and Pavlova (2012)	Methods of the estimation of climate change impact on agricultural productivity	Winter wheat productivity increased during 1975- 2009

Modeling climate change and agricultural yields

AGRIWANET Workshop, 17-18 April 2015

Objective of the study		Conclusions

PREVIOUS STUDIES

Authors	Title	Climate change impact
Sirotenko et al. (1997)	Sensitivity of the Russian agriculture to changes in climate	Reduction of 15% by 2030
Alcamo et al. (2007)	A new assessment of climate change impacts on food production shortfalls	-9% to +12% depending on oblast
Safonov and Safonova (2013)	Economic analysis of the impact of climate change on agriculture in Russia	+9% by 2030 +12% by 2050
Lobell, Schlenker, and Costa-Roberts (2011)	Climate trends and global crop production since 1980	Reduction of 15% during 1980-2008
Sirotenko and Pavlova (2012)	Methods of the estimation of climate change impact on agricultural productivity	Winter wheat productivity increased during 1975- 2009

TABLE OF CONTENTS

1 Objective of the study

2 Methodology

3 Data

4 Results

5 Conclusions

I<mark>a</mark>mo

Objective of the study	Methodology		Conclusions
METHODO	LOGY		

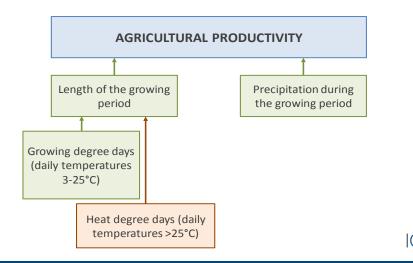
STEP 1: TO ESTIMATE THE RELATIONSHIP BETWEEN CURRENT WEATHER CONDITIONS AND AGRICULTURAL PRODUCTION

IOMO

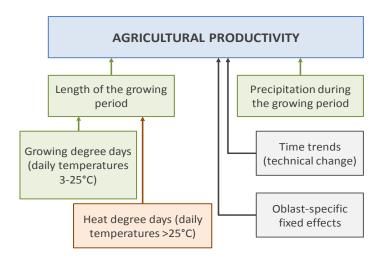
Modeling climate change and agricultural yields

AGRIWANET Workshop, 17-18 April 2015

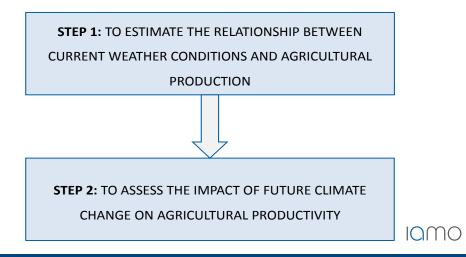
Objective of the study	Methodology		Conclusions
MODEL	FED 1		



IOMO


Modeling climate change and agricultural yields

AGRIWANET Workshop, 17-18 April 2015

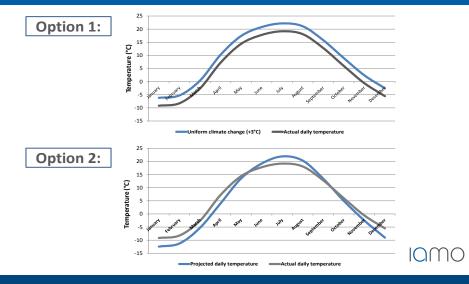

Objective of the study	Methodology		Conclusions
MODEL	FED 1		

Objective of the study	Methodology		Conclusions
MODEL: S1	EP 1		

Objective of the study	Methodology		Conclusions
MODEL: ST	EP 2		

Option 1:

Temperatures increase gradually and uniformly in every region of the country, change reaches 5°C


Option 2:

Climate change follows projections assessed by the Intergovernmental Panel on Climate Change (IPCC): unequal and non-uniform distribution of changes in climate

I<mark>a</mark>mo

Objective of the study	Methodology		Conclusions

MODEL: STEP 2

TABLE OF CONTENTS

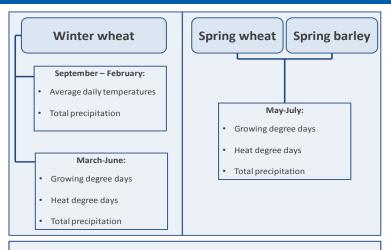
- 1 Objective of the study
- 2 Methodology
- 3 Data
- 4 Results

5 Conclusions

I<mark>a</mark>mo

Objective of the study	Data	Conclusions

AGRICULTURAL DATA


Time frame: 1955-2012

Sample: 62 out of 77 subjects of Russian Federation

Sources: Russian Federation Federal Statistical Service (1992-2014) Central Statistical Directorate of the Council of Ministers of the USSR (1956-1991)

Objective of the study	Data	Conclusions

CLIMATE DATA

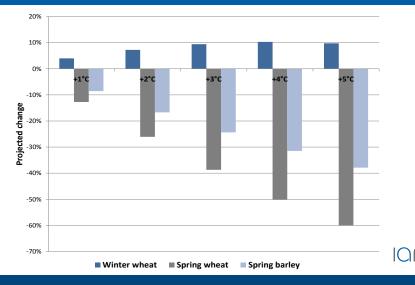
Source: 1.0° Global dataset of meteorological forces (Sheffield, Goteti, and Wood 2006)

TABLE OF CONTENTS

- 1 Objective of the study
- 2 Methodology
- 3 Data
- 4 Results

5 Conclusions

I<mark>a</mark>mo

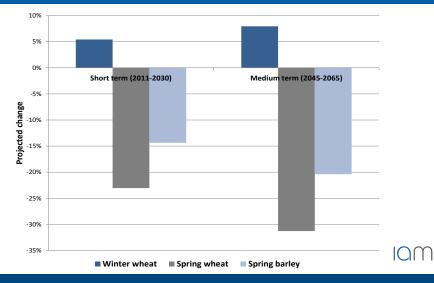

Objective of the study		Results	Conclusions

PAST YIELD OUTCOMES

Variable	Winter wheat	Spring wheat	Spring barley
Growing degree days	0.00047***	-0.000760***	-0.00080***
Heat degree days	-0.00471***	-0.010440***	-0.01950***
Temp _{autumn}	0.01788	-	-
Temp ² _{autumn}	-0.00140*	-	-
Temp _{winter}	0.01032*	-	-
Temp ² _{winter}	-0.00059**	-	-
P _{summer}	0.00377***	0.010240***	0.00396***
P ² _{summer}	-0.00001***	-0.000022***	-0.00001***
Pautumn	0.00077***	-	-
P ² _{autumn}	-0.00001***	-	-
P _{winter}	-0.00227***	-	-
P ² _{winter}	0.00001***	-	-
HDD · P _{summer}	-	0.000096***	0.00018***
$HDD \cdot P_{summer}^2$	-	-0.000001***	-0.000001***
R ²	0.9953	0.9854	0.9852
N observations	3049	3689	3874

Objective of the study		Results	Conclusions

PROJECTED YIELD CHANGES (uniform CC)

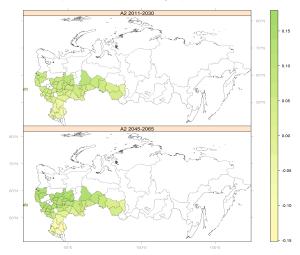


Modeling climate change and agricultural yields

AGRIWANET Workshop, 17-18 April 2015

Objective of the study		Results	Conclusions

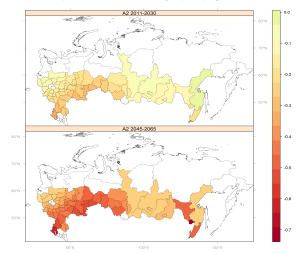
PROJECTED YIELD CHANGES (IPCC projections)


Modeling climate change and agricultural yields

AGRIWANET Workshop, 17-18 April 2015

Ob	jectiv	ve of	f the	stud	y
----	--------	-------	-------	------	---

SPATIAL DISTRIBUTION: WINTER WHEAT

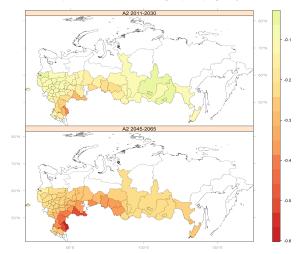

Spatial distribution of climate change impact: Winter wheat

Objective of the study		Results

SPATIAL DISTRIBUTION: SPRING WHEAT

Spatial distribution of climate change impact: Spring wheat

IOMO


Modeling climate change and agricultural yields

AGRIWANET Workshop, 17-18 April 2015

Objective of the study		Results	Conclusions

SPATIAL DISTRIBUTION: SPRING BARLEY

Spatial distribution of climate change impact: Spring barley

TABLE OF CONTENTS

- 1 Objective of the study
- 2 Methodology
- 3 Data
- 4 Results

5 Conclusions

I<mark>a</mark>mo

- Agricultural productivity is closely connected to climate conditions.
- Winter crops will be less affected by projected climate change than spring crops.
- Adaptation measures should include changes in production structure to avoid crops that are significantly vulnerable even to slightly changing temperatures.

REFERENCES

- Alcamo J., Dronin N., Endejan, M., Golubev, G., and Kirilenko, A. (2007). A new assessment of climate change impacts on food production shortfalls and water availability in Russia. *Global Environmental Change* 17: 429-444.
- Bontemps, S., Defourny, P., Bogaert, E.V., Arino, O., Kalogirou, V., and Perez, J.R. (2010). GLOBCOVER 2009 Products description and validation report.
- Cline, W. R., 2007. Global Warming and Agriculture: Impact Estimates by Country. Washington: Center for Global Development and Peterson Institute for International Economics.
- FAOSTAT (2014). http://faostat.fao.org Statistical database of the Food and Agriculture Organization of the United Nations. Accessed on January 15, 2015.
- Lobell, D.B., Schlenker, W., and Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science 333: 616-620.
- Rosstat (annual editions from 1992 to 2014). Statistical Yearbook: Agriculture in Russia. Moscow (Russia): Russian Federation Federal Statistical Agency (Rosstat).
- Safonov G. and Safonova Y. (2013). Economic analysis of the impact of climate change on agriculture in Russia. Oxfam research reports, April 2013.
- Schlenker, W. and Roberts, M.J. (2009) Nonlinear Temperature Effects Indicate Severe Damages to U.S. Crop Yields under Climate Change. PNAS 106: 15594-15598.
- Sheffield, J., Goteti, G., and Wood E.F. (2006). Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. *Journal of Climate* 19(13): 3088-3111.
- Sirotenko O.D., Abashina, H.V., and Pavlova, V.N. (1997). Sensitivity of the Russian agriculture to changes in climate, CO₂ and tropospheric ozone concentrations and soil fertility. *Climatic Change* 36: 217-232
- Sirotenko O.D. and Pavlova, V.N. (2012). Methods of the estimation of climate change impact on agricultural productivity. In: Methods of the estimation of climate change consequences for physical and biological systems, Russian Federal Service for Hydrometeorology and Environmental Monitoring.
- TSSU (annual editions from 1956 to 1991). Statistical Yearbook: The Economy of the Russian Soviet Federative Socialistic Republic. Moscow (USSR): "Finance and Statistics", Central Statistical Directorate (TsSU).