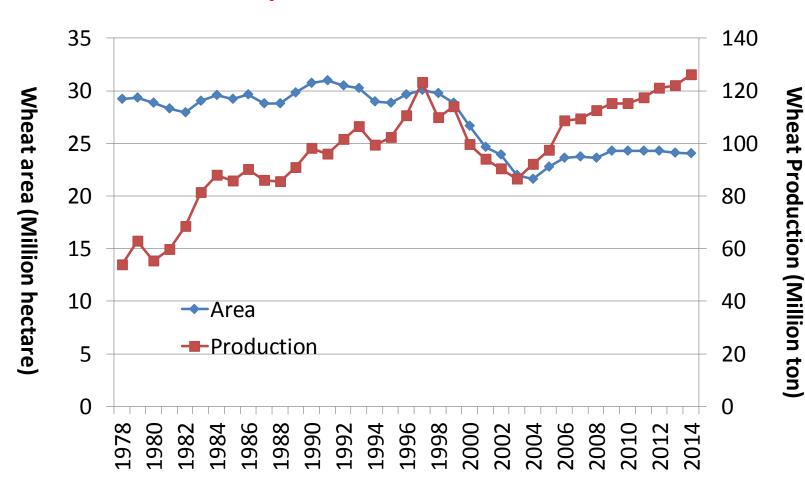
Evaluating the impact of adopting CIMMYT wheat germplasm in China

—Implications for wheat productivity

Cheng XIANG
Institute of Agricultural Economics and Development,
Chinese Academy of Agricultural Science

June. 22, 2017


Contents

- Motivations
- Data
- Results

Motivations

The impressive increase in wheat yields in China

- Area ↓ 17%
- Production ↑ 134%

Motivations

 Given current land and water constraints and high cropping intensity, with the excessive use of agrochemicals, future wheat food security in China will depend largely on sustainably raising productivity

Our question:

What are the trends and sources for China's wheat productivity growth in recent decades?

Motivations

Previous studies:

- ——Technology has contributed the most to rice yield growth during the period 1975-90, and hybrid rice adoption is responsible for most of the technical change component (Huang & Rozelle, 1996)
- ——The genetic material from CGIAR had contributed to China's wheat productivity prior to the mid-1990s (Jin et al., 2002)

Our questions:

What are the trends and sources for China's wheat productivity growth in recent decades?

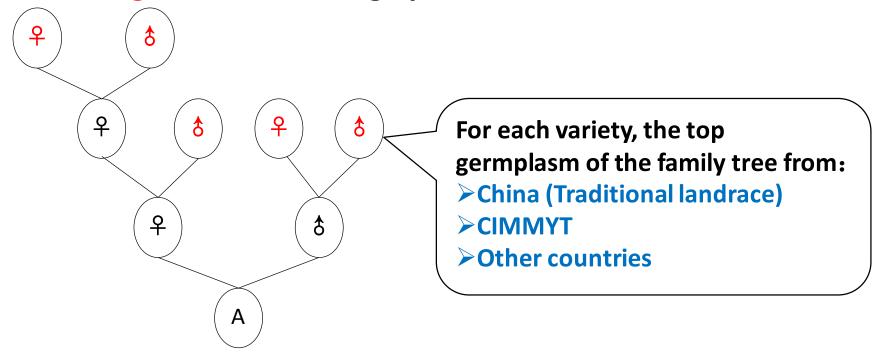
Is CGIAR germplasm contributing to China's wheat productivity growth since the mid-1990s?

Data

• I: Wheat varieties

• II: Wheat production inputs & outputs

Data I:Wheat varieties Major varieties

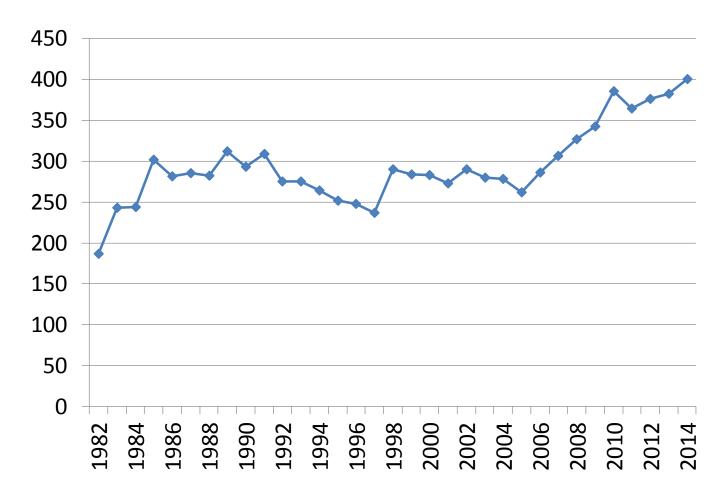

Varieties grown on at least 6,667 hectares (100,000 mu) in China in a given year is considered "major"

 Area sown to major wheat varieties by province for each year during 1982-2014 (MOA, 1982-2014)

Totaling 2146 major wheat varieties from the top
 17 wheat production provinces

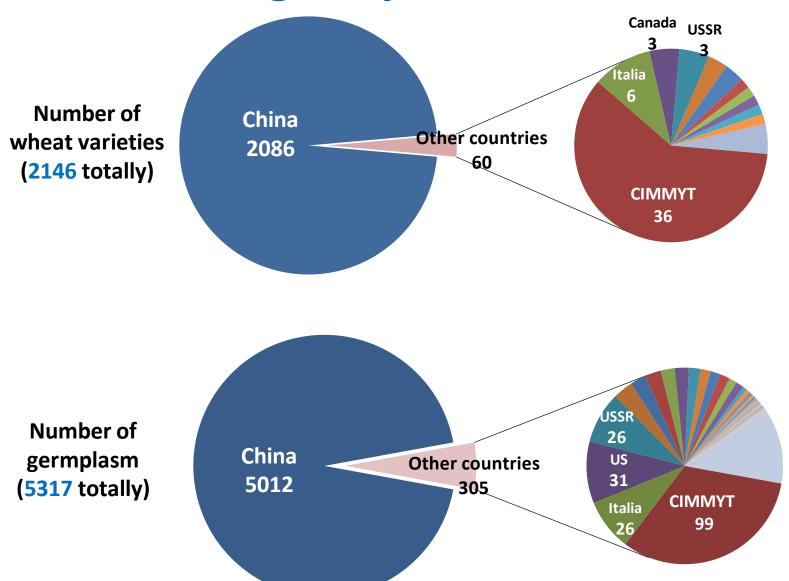
Data II: Wheat varieties Pedigree information

- Traced detailed pedigree information for each of the 2146 varieties
- Traced to the point where a non-Chinese parent appeared
- Traced 6 generations averagely

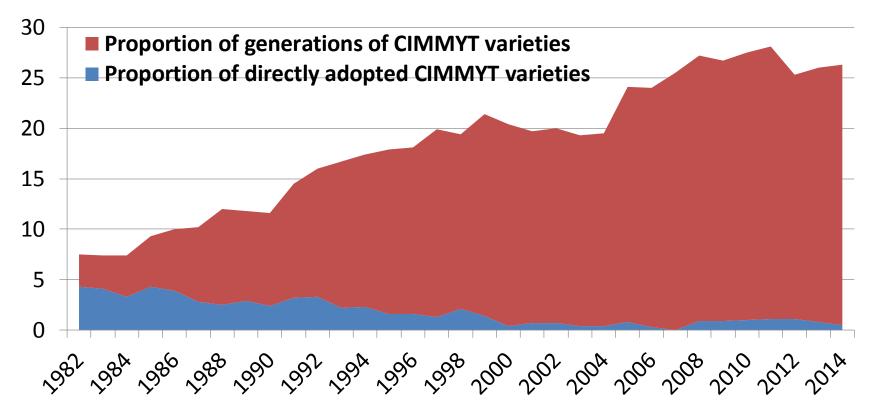


Data II: Wheat production inputs & outputs

 Wheat production inputs and outputs by province (NDRC, 1980-2015)

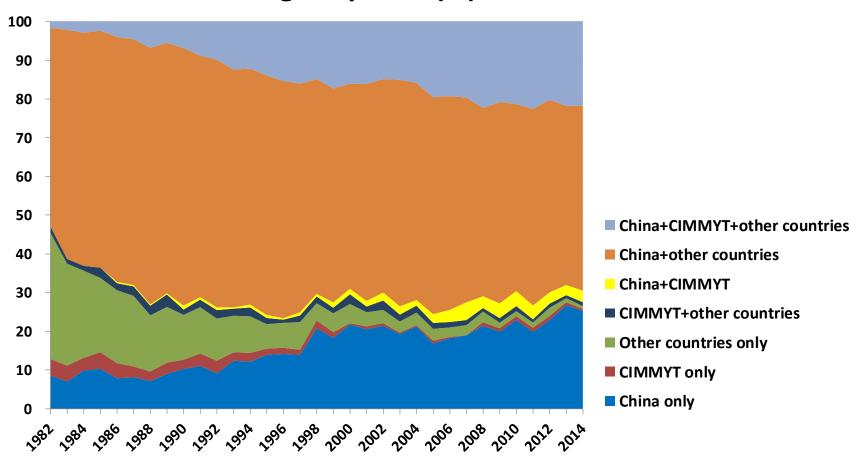

 Irrigation and abiotic constraints (e.g., drought and cold damage)

Number of wheat varieties


A slight rising trend in the number of wheat varieties

Number of wheat varieties & germplasm used

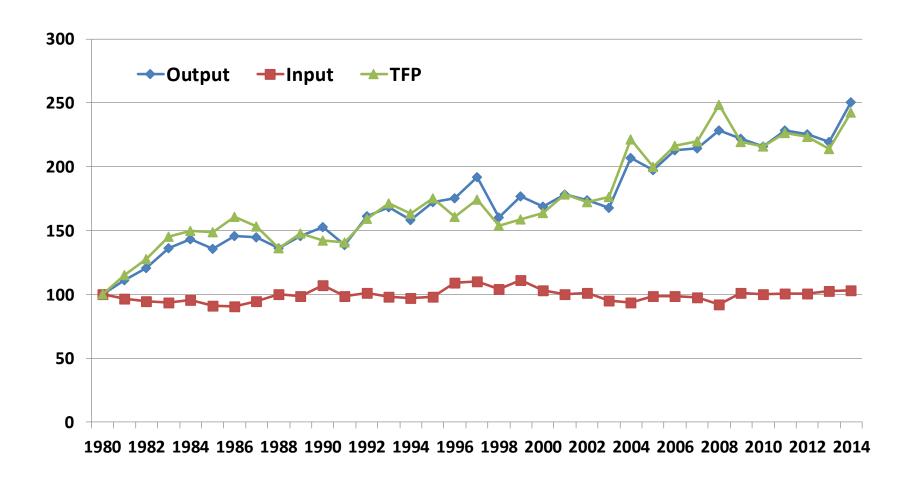
The contribution of CIMMYT Germplasm to wheat varieties in China


Proportion of varieties with CIMMYT germplasm (%)

- •Chinese breeders used CIMMYT germplasm increasingly to generate new wheat varieties
- •The contribution of CIMMYT's germplasm to China's wheat varieties is significant and has grown over time

The contribution of CIMMYT Germplasm to wheat varieties in China

Source of germplasm (%)


Wheat Total Factor Productivity

Tornquist-Theil TFP index:

$$\ln(TFP_t/TFP_{t-1}) = \ln(Q_t/Q_{t-1}) - 0.5 \cdot \sum_i (S_{it} + S_{it-1}) \cdot \ln(X_{it}/X_{it-1})$$

- Q_t: the wheat output (yield in kg/ha) in the tth year
- S_{it} : the share of the i^{th} input in total cost
- X_{it}: the ithinput, including labor, seed, fertilizer, pesticide, machinery, equipment, and other material inputs

Wheat Total Factor Productivity

In general, China has experienced rapid and dramatic growth in wheat TFP during 1980-2014

Impact of CIMMYT Wheat Germplasm on wheat productivity in China

$$TFP_{jt} = \alpha + \theta \cdot CG_{jt} + \gamma \cdot Z_{jt} + \varepsilon_{jt}$$

CGit: the proportion of varieties with difference sources of germplasm

- Z_{it}: including
 - ——the proportion of crop area affected by drought and by frost
 - ——time trend

Impact of CIMMYT Wheat Germplasm on wheat productivity in China (Fixed-effect results)

	(1)	(2)	(3)
Proportion of varieties with CIMMYT germplasm	0.54***		0.54***
	(3.34)		(3.37)
Proportion of varieties with germplasm from other countries	, ,	-0.00	-0.05
		(0.02)	(0.43)
Proportion of crop area affected by drought (%)	-0.50***	-0.51***	-0.49***
	(4.90)	(4.85)	(4.83)
Proportion of crop area affected by frozen (%)	-0.82	-0.78	-0.82
	(1.64)	(1.52)	(1.64)
hrs	16.64	15.32	17.27
	(0.60)	(0.53)	(0.62)
t	1.97***	2.51***	1.93***
	(11.19)	(15.53)	(10.34)
Constant	71.74***	73.09**	76.16 ***
	(2.65)	(2.50)	(2.71)

The contribution of CIMMYT germplasm to China's wheat TFP: 0.54*(26.3%-7.5%)=10%

Impact of CIMMYT Wheat Germplasm on wheat productivity in China (Fixed-effect results)

	TFP
Proportion of varieties with China & CIMMYT germplasm	1.92***
	(3.51)
Proportion of varieties with germplasm from China & other countries	0.09
	(0.62)
Proportion of varieties with germplasm from China & CIMMYT & other	0.56***
countries	(2.68)
Proportion of varieties with CIMMYT germplasm only	0.48*
	(1.76)
Proportion of varieties with germplasm from other countries only	-0.29
	(1.34)
Proportion of varieties with germplasm from CIMMYT & other countries	0.00
	(0.01)
Proportion of crop area affected by drought (%)	-0.50***
	(4.76)
Proportion of crop area affected by frozen (%)	-0.84*
The contribution of CIMMYT germplasm to China's wheat TFP:)
1.92*(3%-0%)+0.56*(21.8%-1.6%)+0.48*(0.5%-4.3%	5)=15%
t	1.58***
	(6.00)
_cons	93.63***
	(3.08)

Conclusions

- The wheat TFP has grown steadily in the past three decades
- Chinese breeders used CIMMYT germplasm increasingly to generate new wheat varieties
- Compared with the non-CIMMYT germplasm, CIMMYT germplasm brought an increase in China's wheat TFP in the range of 10-15% in the past three decades

Thanks