Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary

Bertrand Competition in Oligopsonistic Market Structures

The Case of the Indonesian Rubber Processing Sector

Thomas Kopp & Bernhard Brümmer

University of Göttingen

IAMO Forum 2017, Halle, June 21st, 2017

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	000000	00		00
Outlin	P				

2 Empirical example

3 Model

- 4 Empirical approach
- 5 Data and selected findings

6 Summary

Motivation	Empirical example 00	Model 000000	Empirical approach 00	Data and selected findings	Summary 00
Outline	د				

2 Empirical example

3 Model

- 4 Empirical approach
- Data and selected findings

6 Summary

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
●○	00	000000	00		00
Motiva	ation				

- Law of one price (LOP): prices of idential goods differ only by the trade costs between locations
- Empirics: Frequent violations
- One possible explanation market power
- Research questions
 - Causes of violations of LOP?
 - Role of aggregation over time?
 - Market power: Dynamics between firms?

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
●○	00	000000	00		00
Motiva	tion				

• Law of one price (LOP): prices of idential goods differ only by the trade costs between locations

• Empirics: Frequent violations

- One possible explanation market power
- Research questions
 - Causes of violations of LOP?
 - Role of aggregation over time?
 - Market power: Dynamics between firms?

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
●○	00	000000	00		00
Motiva	tion				

- Law of one price (LOP): prices of idential goods differ only by the trade costs between locations
- Empirics: Frequent violations
- One possible explanation market power
- Research questions
 - Causes of violations of LOP?
 - Role of aggregation over time?
 - Market power: Dynamics between firms?

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
●○	00	000000	00		00
Motiva	tion				

- Law of one price (LOP): prices of idential goods differ only by the trade costs between locations
- Empirics: Frequent violations
- One possible explanation market power
- Research questions
 - Causes of violations of LOP?
 - Role of aggregation over time?
 - Market power: Dynamics between firms?

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
●○	00	000000	00		00
Motiva	tion				

- Law of one price (LOP): prices of idential goods differ only by the trade costs between locations
- Empirics: Frequent violations
- One possible explanation market power
- Research questions
 - Causes of violations of LOP?
 - Role of aggregation over time?
 - Market power: Dynamics between firms?

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
●○	00	000000	00		00
Motiva	tion				

• Law of one price (LOP): prices of idential goods differ only by the trade costs between locations

- Empirics: Frequent violations
- One possible explanation market power
- Research questions
 - Causes of violations of LOP?
 - Role of aggregation over time?
 - Market power: Dynamics between firms?

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
●○	00	000000	00		00
Motiva	tion				

- Law of one price (LOP): prices of idential goods differ only by the trade costs between locations
- Empirics: Frequent violations
- One possible explanation market power
- Research questions
 - Causes of violations of LOP?
 - Role of aggregation over time?
 - Market power: Dynamics between firms?

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
○●	00	000000	00		00
Motiva	ation				

- Theoretical explanations for violations of the LOP?
- How to generate empirical evidence on that?
- What are the implications of different levels of temporal aggregation?
- How to generate insights on the dynamics between firms?

• What we do:

- Model to explain deviations from LOP
- Test for violations of LOP by empirical analysis synchronising and staggering at different time horizons
- Vector Error Correction Model for analyzing Impulse Response Functions (not included in presentation)

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
○●	00	000000	00		00
Motiva	ation				

• Theoretical explanations for violations of the LOP?

- How to generate empirical evidence on that?
- What are the implications of different levels of temporal aggregation?
- How to generate insights on the dynamics between firms?

• What we do:

- Model to explain deviations from LOP
- Test for violations of LOP by empirical analysis synchronising and staggering at different time horizons
- Vector Error Correction Model for analyzing Impulse Response Functions (not included in presentation)

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
○●	00	000000	00		00
Motiva	ation				

- Theoretical explanations for violations of the LOP?
- How to generate empirical evidence on that?
- What are the implications of different levels of temporal aggregation?
- How to generate insights on the dynamics between firms?

• What we do:

- Model to explain deviations from LOP
- Test for violations of LOP by empirical analysis synchronising and staggering at different time horizons
- Vector Error Correction Model for analyzing Impulse Response Functions (not included in presentation)

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
○●	00	000000	00		00
Motiva	ation				

- Theoretical explanations for violations of the LOP?
- How to generate empirical evidence on that?
- What are the implications of different levels of temporal aggregation?

• How to generate insights on the dynamics between firms?

What we do:

- Model to explain deviations from LOP
- Test for violations of LOP by empirical analysis synchronising and staggering at different time horizons
- Vector Error Correction Model for analyzing Impulse Response Functions (not included in presentation)

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
○●	00	000000	00		00
Motiva	ation				

- Theoretical explanations for violations of the LOP?
- How to generate empirical evidence on that?
- What are the implications of different levels of temporal aggregation?
- How to generate insights on the dynamics between firms?

• What we do:

- Model to explain deviations from LOP
- Test for violations of LOP by empirical analysis synchronising and staggering at different time horizon
- Vector Error Correction Model for analyzing Impulse Response Functions (not included in presentation)

Göttinger

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
○●	00	000000	00		00
Motiva	tion				

- Theoretical explanations for violations of the LOP?
- How to generate empirical evidence on that?
- What are the implications of different levels of temporal aggregation?
- How to generate insights on the dynamics between firms?

• What we do:

- Model to explain deviations from LOP
- Test for violations of LOP by empirical analysis synchronising and staggering at different time horizons
- Vector Error Correction Model for analyzing Impulse Response Functions (*not included in presentation*)

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
○●	00	000000	00		00
Motiva	ation				

- Theoretical explanations for violations of the LOP?
- How to generate empirical evidence on that?
- What are the implications of different levels of temporal aggregation?
- How to generate insights on the dynamics between firms?

• What we do:

- Model to explain deviations from LOP
- Test for violations of LOP by empirical analysis synchronising and staggering at different time horizons
- Vector Error Correction Model for analyzing Impulse Response Functions (*not included in presentation*)

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
○●	00	000000	00		00
Motiva	tion				

- Theoretical explanations for violations of the LOP?
- How to generate empirical evidence on that?
- What are the implications of different levels of temporal aggregation?
- How to generate insights on the dynamics between firms?
- What we do:
 - Model to explain deviations from LOP
 - Test for violations of LOP by empirical analysis synchronising and staggering at different time horizons
 - Vector Error Correction Model for analyzing Impulse Response Functions (*not included in presentation*)

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
○●	00	000000	00		00
Motiva	tion				

- Theoretical explanations for violations of the LOP?
- How to generate empirical evidence on that?
- What are the implications of different levels of temporal aggregation?
- How to generate insights on the dynamics between firms?
- What we do:
 - Model to explain deviations from LOP
 - Test for violations of LOP by empirical analysis synchronising and staggering at different time horizons
 - Vector Error Correction Model for analyzing Impulse Response Functions (*not included in presentation*)

Motivation 00	Empirical example	Model 000000	Empirical approach 00	Data and selected findings	Summary 00
Outlin	P				

Motivation

2 Empirical example

3 Model

- 4 Empirical approach
- Data and selected findings

6 Summary

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	●○	000000	00		00
Empiri	cal example	a			

• Rubber value chain in the Jambi Province, Indonesia

- Interface between agricultural supply (rubber farmers and intermediaries) and processing (crumb rubber factories)
- 251 000 rubber farmers, nine processors (five in the capital Jambi City)
- Processors are price takers on international market and set prices on the domestic market
- Price setting by processors on daily basis

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	●○	000000	00		00
Empiri	cal example	ذ			

- Rubber value chain in the Jambi Province, Indonesia
- Interface between agricultural supply (rubber farmers and intermediaries) and processing (crumb rubber factories)
- 251 000 rubber farmers, nine processors (five in the capital Jambi City)
- Processors are price takers on international market and set prices on the domestic market
- Price setting by processors on daily basis

Thomas Kopp & Bernhard Brümmer

Motivation 00	Empirical example	Model 000000	Empirical approach 00	Data and selected findings	Summary 00
Empiri	cal example	ć			

- Rubber value chain in the Jambi Province, Indonesia
- Interface between agricultural supply (rubber farmers and intermediaries) and processing (crumb rubber factories)
- 251 000 rubber farmers, nine processors (five in the capital Jambi City)
- Processors are price takers on international market and set prices on the domestic market
- Price setting by processors on daily basis

Motivation 00	Empirical example	Model 000000	Empirical approach 00	Data and selected findings	Summary 00
Empiri	cal example	ć			

- Rubber value chain in the Jambi Province, Indonesia
- Interface between agricultural supply (rubber farmers and intermediaries) and processing (crumb rubber factories)
- 251 000 rubber farmers, nine processors (five in the capital Jambi City)
- Processors are price takers on international market and set prices on the domestic market
- Price setting by processors on daily basis

Motivation 00	Empirical example	Model 000000	Empirical approach 00	Data and selected findings	Summary 00
Empiri	cal example	ć			

- Rubber value chain in the Jambi Province, Indonesia
- Interface between agricultural supply (rubber farmers and intermediaries) and processing (crumb rubber factories)
- 251 000 rubber farmers, nine processors (five in the capital Jambi City)
- Processors are price takers on international market and set prices on the domestic market
- Price setting by processors on daily basis

Motivation 00	Empirical example ○●	Model	Empirical approach	Data and selected findings	Summary 00		
Market nower							

• Suppliers facing fixed cost for switching buyers (factories)

- Anecdotal 'evidence': stickiness of individual farmers' sales to a specific factory after price changes
- Components of switching costs: economic costs (getting information on the daily prices of all five factories in advance) and unobserved, informal relationships between farmer and factory

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	○●	000000	00		00
Market power					

- Suppliers facing fixed cost for switching buyers (factories)
- Anecdotal 'evidence': stickiness of individual farmers' sales to a specific factory after price changes
- Components of switching costs: economic costs (getting information on the daily prices of all five factories in advance) and unobserved, informal relationships between farmer and factory

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary	
00	○●	000000	00		00	
Market power						

- Suppliers facing fixed cost for switching buyers (factories)
- Anecdotal 'evidence': stickiness of individual farmers' sales to a specific factory after price changes
- Components of switching costs: economic costs (getting information on the daily prices of all five factories in advance) and unobserved, informal relationships between farmer and factory

Motivation 00	Empirical example 00	Model	Empirical approach 00	Data and selected findings	Summary 00
Outlin	P				

2 Empirical example

3 Model

- 4 Empirical approach
- 5 Data and selected findings

6 Summary

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	●○○○○○	00		00
Model					

World demand for factory *i*'s output O_D^i :

$$O_D^i = \rho p_O^i \tag{1}$$

$p_{\rm O}$ is factory *i*'s output price.

Factory *i*'s production function:

$$O_S^i = A^i I_D^i \tag{2}$$

Göttinger

 O_{S}^{i} : factory *i*'s output supply A^{i} : factory *i*'s inverse input requirement (i.e., productivity) in transforming the rubber input I_{D}^{i} into crumb rubber

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	●○○○○○	00		00
Model					

World demand for factory *i*'s output O_D^i :

$$O_D^i = \rho p_O^i \tag{1}$$

 p_O is factory *i*'s output price. Factory *i*'s production function:

$$O_S^i = A^i I_D^i \tag{2}$$

Camnu

 O_{S}^{i} : factory *i*'s output supply A^{i} : factory *i*'s inverse input requirement (i.e., productivity) in transforming the rubber input I_{D}^{i} into crumb rubber

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	○●○○○○	00		00
Model					

$$R = r_1 q p^i + r_2 q \bar{p} + r_3 q p^i - \int_0^{r_3 q} \gamma x \, dx + r_4 q \bar{p} - \int_0^{r_4 q} \delta y \, dy \quad (3)$$

 p^i : raw rubber price at factory *i*; \bar{p} average price at other factories

 r_4 : farmers incurring switching cost for changing away from *i* r_3 : farmers incurring switching cost for changing to factory *i* Gattinger

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	○●○○○○	00		00
Model					

$$R = r_1 q p^i + r_2 q \bar{p} + r_3 q p^i - \int_0^{r_3 q} \gamma x \, dx + r_4 q \bar{p} - \int_0^{r_4 q} \delta y \, dy \quad (3)$$

 p^i : raw rubber price at factory *i*; \bar{p} average price at other factories

Buyer in previous period	i not i		not i	
Buyer in current period		not i	i	not i
# of farmers	<i>r</i> ₁	r ₄	r ₃	<i>r</i> ₂

 r_4 : farmers incurring switching cost for changing away from *i* r_3 : farmers incurring switching cost for changing to factory *i* Gittinger

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	○●○○○○	00		00
Model					

$$R = r_1 q p^i + r_2 q \bar{p} + r_3 q p^i - \int_0^{r_3 q} \gamma x \, dx + r_4 q \bar{p} - \int_0^{r_4 q} \delta y \, dy \quad (3)$$

 p^i : raw rubber price at factory *i*; \bar{p} average price at other factories

Buyer in previous period	i		not i	
Buyer in current period		not i	i	not i
# of farmers	<i>r</i> ₁	<i>r</i> 4	<i>r</i> ₃	<i>r</i> ₂

*r*₄: farmers incurring switching cost for changing away from *i* r_3 : farmers incurring switching cost for changing to factory i_{rat}

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	○●○○○○	00		00
Model					

$$R = r_1 q p^i + r_2 q \bar{p} + r_3 q p^i - \int_0^{r_3 q} \gamma x \, dx + r_4 q \bar{p} - \int_0^{r_4 q} \delta y \, dy \quad (3)$$

 p^i : raw rubber price at factory *i*; \bar{p} average price at other factories

Buyer in previous period	i		not i	
Buyer in current period		not i	i	not i
# of farmers	<i>r</i> ₁	r ₄	r 3	<i>r</i> ₂

*r*₄: farmers incurring switching cost for changing away from *i r*₃: farmers incurring switching cost for changing to factory *i*_{contringe}

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary			
00	00	○○●○○○	00		00			
Rewritten in shares								

 θ^i : share of farmers selling to factory *i* in previous period $(1 - \theta^i)$: farmers selling to other factories in previous period) ω^i : share of farmers selling to factory *i* in the current period.

$$R = q(\theta^{i}\omega^{i}p^{i} + (1-\theta^{i})(1-\omega^{i})\bar{p} + (1-\theta^{i})\omega^{i}p^{i} + \theta^{i}(1-\omega^{i})\bar{p}) - \int_{0}^{(1-\theta^{i})\omega^{i}q} \gamma x \, dx - \int_{0}^{\theta^{i}(1-\omega^{i})q} \delta y \, dy$$
(4)
Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	○○●○○○	00		00
Rewritt	en in share	es			

 θ^i : share of farmers selling to factory *i* in previous period $(1 - \theta^i)$: farmers selling to other factories in previous period) ω^i : share of farmers selling to factory *i* in the current period.

$$R = q(\theta^{i}\omega^{i}p^{i} + (1-\theta^{i})(1-\omega^{i})\bar{p} + (1-\theta^{i})\omega^{i}p^{i} + \theta^{i}(1-\omega^{i})\bar{p}) - \int_{0}^{(1-\theta^{i})\omega^{i}q} \gamma x \, dx - \int_{0}^{\theta^{i}(1-\omega^{i})q} \delta y \, dy$$
(4)

Revenue maximisation: $\partial R / \partial \omega^i \stackrel{!}{=} 0$. Solving for ω^i : optimal share ω^i of farmers selling to factory *i*.

$$\omega^{i} = \frac{p^{i} - \bar{p} - \delta}{\delta + \gamma q (1 - \theta^{i})^{2}}$$
(5)

Total raw rubber supply for factory *i*: $I_S^i = \omega^i Q$ with Q = qF(Q): total farm output; *F*: number of farmers) Input supply function for factory *i* in equation 6:

$$I_{S}^{i} = \frac{qF(p^{i} - \bar{p} - \delta)}{\delta + \gamma q(1 - \theta^{i})^{2}}$$
(6)

Göttinger

Model oo Empirical approach oo Data and selected findings oo Summary oo Behavioural assumptions Sumptions Summary Summary Summary

Revenue maximisation: $\partial R / \partial \omega^i \stackrel{!}{=} 0$. Solving for ω^i : optimal share ω^i of farmers selling to factory *i*.

$$\omega^{i} = \frac{p^{i} - \bar{p} - \delta}{\delta + \gamma q (1 - \theta^{i})^{2}}$$
(5)

Total raw rubber supply for factory *i*: $I_{S}^{i} = \omega^{i}Q$ with Q = qF(Q): total farm output; *F*: number of farmers) Input supply function for factory *i* in equation 6:

$$I_{S}^{i} = \frac{qF(p^{i} - \bar{p} - \delta)}{\delta + \gamma q(1 - \theta^{i})^{2}}$$
(6)

Göttinger

Model	• Input dem	nand			
Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	○○○○●○	00		00

Market clearance at factory level

$$I_S^i \stackrel{!}{=} I_D^i \tag{7}$$

$$O_S^i \stackrel{!}{=} O_D^i \tag{8}$$

Combined with world demand share (eq. 1) and production function (eq. 2):

$$l_D^i = \frac{\rho p'_O}{A^i} \tag{9}$$

Model	Input dem	and			
Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	○○○○●○	00		00

Market clearance at factory level

$$I_S^i \stackrel{!}{=} I_D^i \tag{7}$$

$$O_S^i \stackrel{!}{=} O_D^i \tag{8}$$

Combined with world demand share (eq. 1) and production function (eq. 2):

$$I_D^i = \frac{\rho p_O^i}{A^i} \tag{9}$$

$$p_I^i = \rho p_O^i \frac{\delta + \gamma q (1 - \theta^i)^2}{A^i q F} + \bar{p} + \delta$$
(10)

Göttingen Campus

- on its own technology A^t
- ... total raw rubber supply the larger qF, the lower the price
- \ldots market power only if switching costs γ and δ are non-zero

$$p_I^i = \rho p_O^i \frac{\delta + \gamma q (1 - \theta^i)^2}{A^i q F} + \bar{p} + \delta$$
(10)

Göttinger

- on its own technology Aⁱ
- ... total raw rubber supply the larger qF, the lower the price
- . . . market power only if switching costs γ and δ are non-zero

$$p_I^i = \rho p_O^i \frac{\delta + \gamma q (1 - \theta^i)^2}{A^i q F} + \bar{p} + \delta$$
(10)

Göttinger

- on its own technology Aⁱ
- ... total raw rubber supply the larger qF, the lower the price
- . . . market power only if switching costs γ and δ are non-zero

$$p_I^i = \rho p_O^i \frac{\delta + \gamma q (1 - \theta^i)^2}{A^i q F} + \bar{p} + \delta$$
(10)

Campus

- on its own technology Aⁱ
- ... total raw rubber supply the larger qF, the lower the price
- . . . market power only if switching costs γ and δ are non-zero

Motivation 00	Empirical example 00	Model 000000	Empirical approach	Data and selected findings	Summary 00
Outlin	e				

2 Empirical example

3 Model

- 4 Empirical approach
- Data and selected findings

6 Summary

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	000000	●○		00
Metho	dologies				

- Synchronisation vs staggering: evidence for deviations from LOP
- Vector error correction model (VECM) and impulse response functions (IRFs): insights on the dynamics between stakeholders in the market (*not included in presentation*)

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	000000	●○		00
Metho	dologies				

- Synchronisation vs staggering: evidence for deviations from LOP
- Vector error correction model (VECM) and impulse response functions (IRFs): insights on the dynamics between stakeholders in the market (*not included in presentation*)

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	000000	○●	000	00
Synchr	onisation v	s stagge	ering		

- Synchronisation vs staggering: timing of price changes whether or not prices change in parallel ('synchronized')
- Intuition: compare three sets of time series of prices:
 - Observed series
 - Artificial series with perfect staggering or synchronisation
 - Compare standard deviations of instances of price changes
- *Procedure:* standard deviation of hypothetical scenarios versus SD of the observed data.
 - Five factories: six discrete possibilities for the share of prices changes in any given period (0.0, 0.2, 0.4, 0.6, 0.8, 1.0)
 - Perfect synchronization: Either 0 or 1
 - Perfect staggering: average over the whole observation period
 - Temporal aggregation: daily weekly long-run

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	000000	○●		00
Synchr	onisation v	s stagge	ering		

- Synchronisation vs staggering: timing of price changes whether or not prices change in parallel ('synchronized')
- Intuition: compare three sets of time series of prices:
 - Observed series
 - Artificial series with perfect staggering or synchronisation
 - Compare standard deviations of instances of price changes
- *Procedure:* standard deviation of hypothetical scenarios versus SD of the observed data.
 - Five factories: six discrete possibilities for the share of prices changes in any given period (0.0, 0.2, 0.4, 0.6, 0.8, 1.0)
 - Perfect synchronization: Either 0 or 1
 - Perfect staggering: average over the whole observation period
 - Temporal aggregation: daily weekly long-run

- Synchronisation vs staggering: timing of price changes whether or not prices change in parallel ('synchronized')
- Intuition: compare three sets of time series of prices:
 - Observed series
 - Artificial series with perfect staggering or synchronisation
 - Compare standard deviations of instances of price changes
- *Procedure:* standard deviation of hypothetical scenarios versus SD of the observed data.
 - Five factories: six discrete possibilities for the share of prices changes in any given period (0.0, 0.2, 0.4, 0.6, 0.8, 1.0)
 - Perfect synchronization: Either 0 or 1
 - Perfect staggering: average over the whole observation period
 - Temporal aggregation: daily weekly long-run

- Synchronisation vs staggering: timing of price changes whether or not prices change in parallel ('synchronized')
- Intuition: compare three sets of time series of prices:
 - Observed series
 - Artificial series with perfect staggering or synchronisation
 - Compare standard deviations of instances of price changes
- *Procedure:* standard deviation of hypothetical scenarios versus SD of the observed data.
 - Five factories: six discrete possibilities for the share of prices changes in any given period (0.0, 0.2, 0.4, 0.6, 0.8, 1.0)
 - Perfect synchronization: Either 0 or 1
 - Perfect staggering: average over the whole observation period
 - Temporal aggregation: daily weekly long-run

- Synchronisation vs staggering: timing of price changes whether or not prices change in parallel ('synchronized')
- Intuition: compare three sets of time series of prices:
 - Observed series
 - Artificial series with perfect staggering or synchronisation
 - Compare standard deviations of instances of price changes
- *Procedure:* standard deviation of hypothetical scenarios versus SD of the observed data.
 - Five factories: six discrete possibilities for the share of prices changes in any given period (0.0, 0.2, 0.4, 0.6, 0.8, 1.0)
 - Perfect synchronization: Either 0 or 1
 - Perfect staggering: average over the whole observation period
 - Temporal aggregation: daily weekly long-run

- Synchronisation vs staggering: timing of price changes whether or not prices change in parallel ('synchronized')
- Intuition: compare three sets of time series of prices:
 - Observed series
 - Artificial series with perfect staggering or synchronisation
 - Compare standard deviations of instances of price changes
- *Procedure:* standard deviation of hypothetical scenarios versus SD of the observed data.
 - Five factories: six discrete possibilities for the share of prices changes in any given period (0.0, 0.2, 0.4, 0.6, 0.8, 1.0)
 - Perfect synchronization: Either 0 or 1
 - Perfect staggering: average over the whole observation period.
 - Temporal aggregation: daily weekly long-run

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	000000	○●		00
Synchi	ronisation v	s stagge	ering		

- Synchronisation vs staggering: timing of price changes whether or not prices change in parallel ('synchronized')
- Intuition: compare three sets of time series of prices:
 - Observed series
 - Artificial series with perfect staggering or synchronisation
 - Compare standard deviations of instances of price changes
- *Procedure:* standard deviation of hypothetical scenarios versus SD of the observed data.
 - Five factories: six discrete possibilities for the share of prices changes in any given period (0.0, 0.2, 0.4, 0.6, 0.8, 1.0)
 - Perfect synchronization: Either 0 or 1
 - Perfect staggering: average over the whole observation period.
 - Temporal aggregation: daily weekly long-run

00	00	000000		000	00
Synch	ronisation v	's stagge	ering		

- Synchronisation vs staggering: timing of price changes whether or not prices change in parallel ('synchronized')
- Intuition: compare three sets of time series of prices:
 - Observed series
 - Artificial series with perfect staggering or synchronisation
 - Compare standard deviations of instances of price changes
- *Procedure:* standard deviation of hypothetical scenarios versus SD of the observed data.
 - Five factories: six discrete possibilities for the share of prices changes in any given period (0.0, 0.2, 0.4, 0.6, 0.8, 1.0)
 - Perfect synchronization: Either 0 or 1
 - Perfect staggering: average over the whole observation period.

• Temporal aggregation: daily - weekly - long-run

- Synchronisation vs staggering: timing of price changes whether or not prices change in parallel ('synchronized')
- Intuition: compare three sets of time series of prices:
 - Observed series
 - Artificial series with perfect staggering or synchronisation
 - Compare standard deviations of instances of price changes
- *Procedure:* standard deviation of hypothetical scenarios versus SD of the observed data.
 - Five factories: six discrete possibilities for the share of prices changes in any given period (0.0, 0.2, 0.4, 0.6, 0.8, 1.0)
 - Perfect synchronization: Either 0 or 1
 - Perfect staggering: average over the whole observation period.

• Temporal aggregation: daily – weekly – long-run

- Synchronisation vs staggering: timing of price changes whether or not prices change in parallel ('synchronized')
- Intuition: compare three sets of time series of prices:
 - Observed series
 - Artificial series with perfect staggering or synchronisation
 - Compare standard deviations of instances of price changes
- *Procedure:* standard deviation of hypothetical scenarios versus SD of the observed data.
 - Five factories: six discrete possibilities for the share of prices changes in any given period (0.0, 0.2, 0.4, 0.6, 0.8, 1.0)
 - Perfect synchronization: Either 0 or 1
 - Perfect staggering: average over the whole observation period.

• Temporal aggregation: daily - weekly - long-run

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	000000	00		00
Outlin					

2 Empirical example

3 Model

- 4 Empirical approach
- Data and selected findings

6 Summary

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	000000	00	●○○	00
Data					

• Buying prices of five crumb rubber factories: GAPKINDO

• World prices: *PT. Kharisma* (Jakarta-based marketing company)

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	000000	00	●○○	00
Data					

• Buying prices of five crumb rubber factories: GAPKINDO

Varga Bulan Bulan April 2012 Hars. M. APD MISHIM. W M.H.T. MIRUCH.TO. Alo 21, 30,00030,400,30,500,30,000,-30,000,30,000; 21, 30,000,30,100,-30,500,30,000,-29,000,-20,000,-Wakat Isa Alman? 111424 - -262 29,000, 30,100 30,500, 30,000, - 29,000, 29,200 Muego outin 29,000, 30,100, 30, 500, -30,000 29,000, -29, 700,-1/213 29,500 70,100 70,500, 29,500, 29,500, 29,800,-2 29,500, 29, 800 30, 500, 29, 500, 29, 000, 29, 700, Capit 29, 800 29, 300 130,000, 29, 800, 29, 000, 29, 600 Whist 20, 50, -29, 800 30,000, 20, 500 - 30,000, 79, 800 24/ 29,500 29,300, 29,500, 29,000, -30,000, -20,000 Atuggo - 29, 800, 79, 500, 78, 50, - 29, 50294,00 tinger

World prices: PT. Kharisma (Jakarta-based marketing)

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	000000	00	●○○	00
Data					

- Buying prices of five crumb rubber factories: GAPKINDO
- World prices: *PT. Kharisma* (Jakarta-based marketing company)

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
				000	

• Short run (daily):

- Average price changes: 31 % (221 over 705 days)
- Hypothetical standard deviation (SD): 0.464 for the case of perfect synchronization
- Observed SD of share of price changes per period 0.30
- Only 2/3 of perfect synchronisation SD
- Prices are not synchronised on a daily basis.
- Short-run many other reasons for (not) changing prices = > comparison to a medium level of aggregation.

Göttinger

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
				000	

• Short run (daily):

• Average price changes: 31 % (221 over 705 days)

- Hypothetical standard deviation (SD): 0.464 for the case of perfect synchronization
- Observed SD of share of price changes per period 0.30
- Only 2/3 of perfect synchronisation SD
- Prices are not synchronised on a daily basis.
- Short-run many other reasons for (not) changing prices = > comparison to a medium level of aggregation.

Göttinger

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	000000	00	○●○	00

• Short run (daily):

- Average price changes: 31 % (221 over 705 days)
- Hypothetical standard deviation (SD): 0.464 for the case of perfect synchronization
- Observed SD of share of price changes per period 0.30
- Only 2/3 of perfect synchronisation SD
- Prices are not synchronised on a daily basis.
- Short-run many other reasons for (not) changing prices = > comparison to a medium level of aggregation.

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	000000	00	○●○	00

- Short run (daily):
 - Average price changes: 31 % (221 over 705 days)
 - Hypothetical standard deviation (SD): 0.464 for the case of perfect synchronization
 - Observed SD of share of price changes per period 0.30
 - Only 2/3 of perfect synchronisation SD
 - Prices are not synchronised on a daily basis.
 - Short-run many other reasons for (not) changing prices = > comparison to a medium level of aggregation.

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	000000	00	○●○	00

- Short run (daily):
 - Average price changes: 31 % (221 over 705 days)
 - Hypothetical standard deviation (SD): 0.464 for the case of perfect synchronization
 - Observed SD of share of price changes per period 0.30
 - Only 2/3 of perfect synchronisation SD
 - Prices are not synchronised on a daily basis.
 - Short-run many other reasons for (not) changing prices = > comparison to a medium level of aggregation.

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	000000	00	○●○	00

- Short run (daily):
 - Average price changes: 31 % (221 over 705 days)
 - Hypothetical standard deviation (SD): 0.464 for the case of perfect synchronization
 - Observed SD of share of price changes per period 0.30
 - Only 2/3 of perfect synchronisation SD
 - Prices are not synchronised on a daily basis.
 - Short-run many other reasons for (not) changing prices = > comparison to a medium level of aggregation.

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	
00	00	000000	00	000	00

- Short run (daily):
 - Average price changes: 31 % (221 over 705 days)
 - Hypothetical standard deviation (SD): 0.464 for the case of perfect synchronization
 - Observed SD of share of price changes per period 0.30
 - Only 2/3 of perfect synchronisation SD
 - Prices are not synchronised on a daily basis.
 - Short-run many other reasons for (not) changing prices = > comparison to a medium level of aggregation.

Synchr	onisation v	s, stage	ering		
Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	000000	00	○○●	00

• Medium run (weekly averages):

- Variable subject to investigation: number of processors changing the price during one week at least once
- Observed data: mean = 0.9 and SD = 0.18
- Indicates nearly perfect synchronisation on a weekly basis
- (On a monthly basis, the synchronisation is perfect)
- Note that this approach only captures whether a price has changed or not and does not suggest the magnitude.

• Long run (4 years):

- Systematic differences in the processors' average margins
- Large difference between average prices paid by the different processors
- The highest and lowest mean margin differ by 5.9%

C			· · · · · · · · · · · · · · · · · · ·		
				000	
Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary

• Medium run (weekly averages):

- Variable subject to investigation: number of processors changing the price during one week at least once
- Observed data: mean = 0.9 and SD = 0.18
- Indicates nearly perfect synchronisation on a weekly basis
- (On a monthly basis, the synchronisation is perfect)
- Note that this approach only captures whether a price has changed or not and does not suggest the magnitude.
- Long run (4 years):
 - Systematic differences in the processors' average margins
 - Large difference between average prices paid by the different processors
 - The highest and lowest mean margin differ by 5.9%

C. us als	and and and a				
00	00	000000	00	000	00
Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary

• Medium run (weekly averages):

- Variable subject to investigation: number of processors changing the price during one week at least once
- Observed data: mean = 0.9 and SD = 0.18
- Indicates nearly perfect synchronisation on a weekly basis
- (On a monthly basis, the synchronisation is perfect)
- Note that this approach only captures whether a price has changed or not and does not suggest the magnitude.
- Long run (4 years):
 - Systematic differences in the processors' average margins
 - Large difference between average prices paid by the different processors
 - The highest and lowest mean margin differ by 5.9%
| Supph | ropication | | | | 00 |
|--------|--------------|-------------------------|--|--|----|
| Synchi | ronisation v | nisation vs. staggering | | | |

• Medium run (weekly averages):

- Variable subject to investigation: number of processors changing the price during one week at least once
- Observed data: mean = 0.9 and SD = 0.18
- Indicates nearly perfect synchronisation on a weekly basis
- (On a monthly basis, the synchronisation is perfect)
- Note that this approach only captures whether a price has changed or not and does not suggest the magnitude.
- Long run (4 years):
 - Systematic differences in the processors' average margins
 - Large difference between average prices paid by the different processors
 - The highest and lowest mean margin differ by 5.9%

00 C	•	000000	•	000	00
Synch	ronisation v	's. stage	gering		

• Medium run (weekly averages):

- Variable subject to investigation: number of processors changing the price during one week at least once
- Observed data: mean = 0.9 and SD = 0.18
- Indicates nearly perfect synchronisation on a weekly basis
- (On a monthly basis, the synchronisation is perfect)
- Note that this approach only captures whether a price has changed or not and does not suggest the magnitude.
- Long run (4 years):
 - Systematic differences in the processors' average margins
 - Large difference between average prices paid by the different processors
 - The highest and lowest mean margin differ by 5.9%

Sup ch	ropication	a ata ga			
				000	
Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary

• Medium run (weekly averages):

- Variable subject to investigation: number of processors changing the price during one week at least once
- Observed data: mean = 0.9 and SD = 0.18
- Indicates nearly perfect synchronisation on a weekly basis
- (On a monthly basis, the synchronisation is perfect)
- Note that this approach only captures whether a price has changed or not and does not suggest the magnitude.

Long run (4 years):

- Systematic differences in the processors' average margins
 Large difference between average prices paid by the different processors
- The highest and lowest mean margin differ by 5.9%

C. us als	and and and a				
00	00	000000	00	000	00
Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary

• Medium run (weekly averages):

- Variable subject to investigation: number of processors changing the price during one week at least once
- Observed data: mean = 0.9 and SD = 0.18
- Indicates nearly perfect synchronisation on a weekly basis
- (On a monthly basis, the synchronisation is perfect)
- Note that this approach only captures whether a price has changed or not and does not suggest the magnitude.

Long run (4 years):

- Systematic differences in the processors' average margins
- Large difference between average prices paid by the different processors
- The highest and lowest mean margin differ by 5.9%

Göttinger

C. us als	and and and a				
00	00	000000	00	000	00
Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary

- Medium run (weekly averages):
 - Variable subject to investigation: number of processors changing the price during one week at least once
 - Observed data: mean = 0.9 and SD = 0.18
 - Indicates nearly perfect synchronisation on a weekly basis
 - (On a monthly basis, the synchronisation is perfect)
 - Note that this approach only captures whether a price has changed or not and does not suggest the magnitude.
- Long run (4 years):
 - Systematic differences in the processors' average margins
 - Large difference between average prices paid by the different processors
 - The highest and lowest mean margin differ by 5.9%

C. us als	and and and a		antin a		
00	00	000000	00	000	00
Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary

- Medium run (weekly averages):
 - Variable subject to investigation: number of processors changing the price during one week at least once
 - Observed data: mean = 0.9 and SD = 0.18
 - Indicates nearly perfect synchronisation on a weekly basis
 - (On a monthly basis, the synchronisation is perfect)
 - Note that this approach only captures whether a price has changed or not and does not suggest the magnitude.
- Long run (4 years):
 - Systematic differences in the processors' average margins
 - Large difference between average prices paid by the different processors
 - The highest and lowest mean margin differ by 5.9%

Göttinger

C. us als	and and and a		antin a		
00	00	000000	00	000	00
Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary

- Medium run (weekly averages):
 - Variable subject to investigation: number of processors changing the price during one week at least once
 - Observed data: mean = 0.9 and SD = 0.18
 - Indicates nearly perfect synchronisation on a weekly basis
 - (On a monthly basis, the synchronisation is perfect)
 - Note that this approach only captures whether a price has changed or not and does not suggest the magnitude.
- Long run (4 years):
 - Systematic differences in the processors' average margins
 - Large difference between average prices paid by the different processors
 - The highest and lowest mean margin differ by 5.9%

Campus

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	000000	00		00
Outlin	P				

Motivation

2 Empirical example

3 Model

- 4 Empirical approach
- Data and selected findings

6 Summary

Göttingen Campus

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	000000	00		●0
Summ	arv				

- Our theoretical model shows that switching costs may enable market participants to exercise market power, even in otherwise competitive environments
- Deviations from the Law of One Price can be observed in the Jambinese rubber processing sector

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	000000	00		●0
Summa	arv				

- Our theoretical model shows that switching costs may enable market participants to exercise market power, even in otherwise competitive environments
- Deviations from the Law of One Price can be observed in the Jambinese rubber processing sector

Motivation	Empirical example	Model	Empirical approach	Data and selected findings	Summary
00	00	000000	00		⊙●

Thank you very much for your attention!

Questions, comments, suggestions are welcome! Contact: bbruemm@gwdg.de

VECM results

	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	D_ln_pBuy1	D_ln_pBuy2	D_ln_pBuy3	D_ln_pBuy4	D_ln_pBuy5	D_ln_pWorld
Lce1	-0.196***	-0.0880***	-0.127***	-0.161***	0.0265	-0.0591
	(0.0329)	(0.0276)	(0.0267)	(0.0247)	(0.0248)	(0.0389)
LD.In_pBuy1	-0.0728	0.0878**	0.0384	0.0280	-0.00213	-0.00498
	(0.0491)	(0.0413)	(0.0399)	(0.0369)	(0.0370)	(0.0581)
L2D.In_pBuy1	-0.0660	0.122***	0.126***	0.0933***	0.0269	0.00302
	(0.0466)	(0.0392)	(0.0379)	(0.0350)	(0.0351)	(0.0552)
L3D.In pBuy1	-0.0283	0.0677*	0.0824**	0.108***	0.0724**	-0.0456
	(0.0448)	(0.0377)	(0.0365)	(0.0337)	(0.0338)	(0.0530)
LD.In pBuy2	0.150***	-0.162***	0.151***	0.0925**	0.0985**	0.0155
	(0.0531)	(0.0447)	(0.0432)	(0.0399)	(0.0400)	(0.0628)
L2D.In pBuy2	0.122**	-0.237***	0.0245	-0.0197	-0.00473	0.0920
_, ,	(0.0530)	(0.0446)	(0.0432)	(0.0399)	(0.0400)	(0.0628)
L3D.In pBuy2	-0.0243	-0.114**	0.0351	0.0251	0.0382	0.178***
_, ,	(0.0530)	(0.0446)	(0.0431)	(0.0398)	(0.0399)	(0.0627)
LD.In pBuy3	0.193***	0.175***	-0.140***	0.205***	0.158***	-0.128*
_, ,	(0.0652)	(0.0548)	(0.0530)	(0.0490)	(0.0491)	(0.0771)
L2D.In pBuy3	0.0734	0.0930	-0.0770	0.175***	0.162***	-0.107
_, ,	(0.0674)	(0.0567)	(0.0549)	(0.0507)	(0.0508)	(0.0798)
L3D.In pBuy3	0.195***	0.108*	-0.00220	0.0837*	0.130***	-0.0955
,	(0.0653)	(0.0550)	(0.0532)	(0.0491)	(0.0492)	(0.0773)
LD.In pBuy4	0.153**	0.0828	0.189***	-0.0825*	-0.0485	0.0990
,	(0.0612)	(0.0515)	(0.0498)	(0.0460)	(0.0461)	(0.0724)
L2D.In pBuy4	0.116*	0.0935*	0.101**	-0.0412	-0.0496	-0.0182
_, ,	(0.0612)	(0.0515)	(0.0498)	(0.0460)	(0.0461)	Göt(01,09724)
L3D.In pBuy4	0.0739	0.0795	0.0206	-0.0853*	-0.0557	C=0)1P76**
,	(0.0581)	(0.0489)	(0.0473)	(0.0437)	(0.0438)	(0.0688)

Competition in a Rubber Processing Oligopsony

Impulse response functions

27

Thomas Kopp & Bernhard Brümmer

Competition in a Rubber Processing Oligopsony